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AND CONDITIONS OF EXISTENCE OF 173 EQUILIBRIUM FORPl* 

V.G. EUTOVt X.M. VXSENIN and G.R, SHF@G?XR 

The difference method is used for obtaining a solution of the problem of unsteady 
motion of a dxop in a stream I taking into account its deformation under conditions 
of axial symmetry. The fluid inside and outside the drop is assumed viscous and 
incompressible, The stable forms of drop axe represented for various Reynolds and 
Weber numbers of external stream. By analyzing the conditions for normal stresses 
at the drop boundary, the critical Weber number was obtained, which establishesthe 
conditions of existence of equilibrium form of the drop. 

1. In spherical system of coordinates that are attached to the ax&symmetric dropsothat 
the coordinate origin is at the center of mass of the drop and the polar axis (the axis of 
symmetry) is directed along the stream the system of equations that define the flow inside 
and outside the drop is of the form 

where the Last equation is the corollaxy of the first two and the condition of incompressibil- 
ity. In the equations r Is the dimensfanless coordinate expressed in units of radius R, 
equivalent to the volume of the spherical drop, 0 is the polar angle (0<0dn).U~,V~ are vel- 
ocity components normalized with respect to velocity u (I of the stream at infinity at initial 
instant of time, subscript k= i and k-2 relate, respectively, to the inner and outer re- 
gions, P is the modified pressure normalized with respect to @so? and @is the drop accelera- 
tion in the stream normaU.zed with respect to u$lR,. 

As the drop boundary are satisfiedtheconditions of continuity of the normal and tangent 
components of velocity vector the continuity of the tangent stress ) the equality af thenormal 
stress discontinuity to the capillary pressure, and the kinematic condition 

where 8,~ are unit vectors tangential and normal to the drop boundary In is directed inside 
the external stream), n is the stress tensor, y is the surface tension coefficient, and Ill.% 
are the principal curvature radii of the drop boundaxies normalized with respect ta the radi- 
usof the spherical drop, 

Away from the drop the velocity components are subject to conditions 

r-00, ~~=~~~~*-~w~~, ygrc-sinB(i- tje&) (1.3) 
0 I3 

it the axis of symmetry the condition of axial. symmetry must be satisfied. At the in- 
itial instant of time the drop form and the vector of velocity must be specified. The latter 
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must satisfy the equation of continuity, the first three conditions of (1,2) and condition 
(1.3) for the equivalence of solution of the system of Eqs.(l.l) to solution of the initial 
system of Navier-Stokes equations, and the equation of continuity require the fulfillment of 
the equation of continuity at the boundaries. 

In the local Cartesian coordinates system the conditions of continuity of the tangent 
stress together with the condition of incompressibility can be written in a form /l/ that will 
prove to be more convenient for subsequent difference approximation. In the course of solv- 
ing the problem, the alteration of drop boundaries necessitates coordinate transformation of 
the form 

e=e, q=r($-($-$!$z) 

where kl,Rs are constants, and 6(&t) is the function defining the boundaries of the drop. In 
new coordinates the drop boundary is a circle of unit radius. 

The conditions of continuity of tangential stress together with the condition incompres- 
sibility and the equality of the normal stress discontinuity to the capillary pressure in new 
coordinates are written as follows: 

i&&+4 -Bo(i-Q6cosB ): Y 
B,,=ohSd' 

(1.4) 

Q* = vII k ,a,,, ,f = ~0s Q *sin a, e = e - cp 

where cp is the angle between the normal to the drop boundary and the axis of symmetry. 

2. Th e problem was solved by the difference method. For solving the first two equations 
of motion (1.1) written in new coordinates, the scheme of variable directions was used. The 
equation for pressure was solved by the method of establishments, based on the scheme of vari- 
able directions. The writing of conditions of tangent stress together with the condition of 
incompressibility in the form (1.4) enabled the use of the scheme of running calculations for 
the determination of velocity vector components along the drop boundary /l/. 

The general order of calculation consists of the following. 
The solution of equation for pressure is obtained. A difference analog of the first of 

Eqs.(l.l) is used for the determination of the pressure at the drop boundary by the external 
stream. The pressure on the drop boundary the internal stream is obtained the difference ana- 
log of the second of Eqs.(1.4). 

The velocity vector components are determined for the inside as well as for the outside 
stream. This is obtained by additional iterations for compliance with the conditions of con- 
tinuity at the drop boundary. 

Acceleration of the drop in the stream is determined, the velocity vector components are 
recalculated away from the drop, and from the difference analog of the kinematic conditionthe 
drop form is established, 

The described method was used for solving the problem of deformation of the orignally 
spherical drop placed in the stream that moves at infinity at velocity iJo.. The dimensionless 
parameters that define the process were selected in such a way that the characteristic time 
of drop formation and the characteristic time of damping its oscillations due to dissipation 
is considerably smaller than the characteristic time of variation of difference of velocities 
between the external stream and the center of mass of the drop. In all calculations the time 
of variation of difference of velocities during the time of drop deformation to the maximum 
value did not exceed 7% of velocity at the initial instant of time. 

The shape of deformed drop in the streamis shown 
in Fig.1 for Rer= IO, PI/PI= iO,p,/p= 10 (solid lines) 
and for Rer = 40, pl/p~ = 40, p,/pt = i0 (dash lines). It is 
seen that the degree of deformation of the drop at 
the same values of the Weber number depends on the 
Reynolds number of the outer flow. For the depend- 
ence of the middle cross section of the deformed drop 
to the initial radius of the spherical drop on the 
Weber number is of the form 

R//R, = i + 0.027 Wo 

Fig.1 



On the basis of experimental investigation at Rea=;lOO-700 /2/ an analogous dependence 
with a coefficient 0.03 at the Weber number was proposed in /3/. 

3, It was not possible to establish the drop form for Ws>20. We shall show that this 
may be due to the impossibility of existence of a steady form of drop for such Weber numbers. 
For simplicity, let us first consider the case in which it is possible to disregardtheinertia 
and viscous forces of motion inside the drap in comparison with the inertia forces of the 
oncoming stream. The mentioned conditions are satisfied if 

In the considered case inside the drop only the hydrostatic forces produced by the ac- 
celeration of the drop in the stream axe essential. 

Since (3.1) implies that Rea>i, in the equation of discontinuity of normal stxesses we 
shall disregard the viscous.component of normal stress in the external stream in comparison 
with the pressure. We locate the origin of cylindrical coordinates r and zat thesternpoint 
of the drop and direct the x axis against the stream. The equation of discontinuityofnormal 
stresses then is written in the form 

(3.2) 

where Pn, is the pressure at the drop boundary at 1-0, and the signs plus and minus relate 
to the forward and rear fronts of the drop. If pressure Pa(r) is known, Eq.(3.2) togetherwith 
additional conditions of symmetry and the expression for the dimensionless volume 

I;'i*=B,*=~*'l~~ _o=o, v=kx 
3 

13.3) 

enable us to determine the drop steady form. 
The necessary condition of solvability of problem (3.21, (3.3) is of the following form: 

f3.41 

where Q is the dimensionless radius of the middle cross section of the drop, and the sub- 
scripts plus and minus denote the pressure at its forward and rear of its ends. At high Re? 
numbers the acceleration and the Bo number are determined only by the pressure drop arising 
in flow separation at the drop, and (3.4) xeduces to the equation of motion of the center of 
mass of the drop. Hence, if the acceleration appearing in the Bo number is found from the 
equation of motion, (3.4) is satisfies. 

Let for scme values of parameters of the problem function Fs(r) and the steady form of 
the drop satisfying (3.2) and (3.31 be known. Let us add to numbers Bo,We and function Pzir) 
small increments dBo,dWe and(IP1(r).It is required to determine the new equilibrium surfaceclose 
to the initial one. Fox this we linearize problem (3.21, (3.3). We assume that each point 
X has received a small increment 8X which we expand in a sum of vectors 6,X= nN pexpend- 
icular and &X tangent to the surface. 

We specify the initial surface in parametric form r&l and z(s), selecting as the para- 
meter 8 the distance of the considered point to one of the poles measured along the meridian 
arc. Then for the perturbation of the surface N(s) we obtain the fallowing problem: 

(3.5) 

where 5 is the distance along the meridian between poles. 
A problems similar to (3.2), (3.3) and (3.51, (3.6) but with the flow in the dxop taken 

into consideration, were used in /4,5/ for determining the drop form of not too high Numbers 
We and Bo 

Besides problem (3.51, (3.6) we shall consider the corresponding to it homogeneous bound- 
ary value problem. Let us assume that the homogeneous problem for some selection of flowpara- 
meters appearing not only explicitly in it, but also implicitly in the form of the drop, has 
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the nontrivial solution m(8). By virtue of self-adjointness of the homogeneous and the in- 
homogeneous boundary value problem, it follows from the Green's formula that the inhomogene- 
ous problem has a solution only then, when the condition of orthogonality of solution V (8) f 
and the right-hand side of (3.5) is satisfied. 

The solution of the homogeneous problem n(6) depends only on form of the drop and the 
number (1 --x&Ho for the imput unperturbed values of parameters. Unlike I=? (8) * 6 (% We&) + 
&[(l-xl)Bo] depends not only on the drop form but on'the perturbations of the stream at the 
external boundary. Such perturbationsmay be, for example, the velocity variation (including 
the inhomogeneous), density of the stream variation at infinity, etc. Hence we can expect a 
situation will arise in which the orthogonality condition of solution I?'(S) to the right-hand 
side of (3.5) is not satisfied and, consequently, the solution of the perturbed problem (3.5), 
(3.6) will not exist. Moreover even when it is satisfied, steady random variation in the ex- 
ternal flow may lead to its breakdown. 

However the nonexistence of solution of problem (3.5), (3.6) does not imply the nonexist- 
ence of solution in the input nonlinear statement. Besides, the conditions of existence and 
stability of solution of problem (l.l)- (1.3) may be impaired prior to reaching parameters 
for which the solution of problem (3-S), (3.6) does not exist. Hence the answer to the ques- 
tion what takes place in fact in the '*suspisious" situation, has to be looked for in the 
comparison with the numerical calculations and the experiment. 

Note that similar approach can be used for determining the critical totality of para- 
meters when the drop form is affected by internal motion and the viscosity in the drop. 

The "suspisious" parameters were determined by a numerical solution of problem (3.5), 
(3.6) in /6/. 

The first part of this paper was concerned with the investigation of the case whenRer= 
40 and the perturbations that have arisen due to increase of the Weber number. It appeared 
that in this case the homogeneous problem corresponding to problem (3.5), (3.6) has a non- 
trivial solution at We,= 20.6. The drop form was approximated by an ellipsoid of revolution, 
the ratio of whose semiaxes was extrapolated by the results of calculations. The "suspisious" 
totality of parameters was calculated also, for the conditions of experiments described in 
/2/. The values of We,=21 obtained for these conditions was in satisfactory agreement with 
those of experimentally obtained in /2/. 
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